
What have we learned from MODIS 
chlorophyll fluorescence? 

 
 

From OSU:  Toby K. Westberry, Michael J. Behrenfeld, 
         Allen J. Milligan 

  

From GSFC: Chuck McClain, Bryan Franz, Gene  
         Feldman 

 

Others:       Emmanuel Boss, Dave Siegel, Scott Doney,  
                 Ivan Lima, Jerry Wiggert, Natalie Mahowald 



What is Chlorophyll fluorescence? 

hν	



Chl 
1. Photochemistry 
2. Heat (non-photochemical quenching) 
3. Fluorescence 

•  Fluorescence occurs under natural sunlight 

•  Fluoresced radiation is discernable in upwelled radiant flux 

•  Chlorophyll-a (Chl) is a ubiquitous plant pigment 

•  Chl dissipates some of its absorbed energy as photons (i.e., fluorescence) 



What is Chlorophyll fluorescence? 

•  Chlorophyll-a (Chl) is a ubiquitous plant pigment 

•  Chl dissipates some of its absorbed energy as photons (i.e., fluorescence) 
 

•  Fluorescence occurs under natural sunlight 

•  Fluoresced radiation is discernable in upwelled radiant flux  

A typical ocean reflectance spectra 
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MODIS Fluorescence Line Height (FLH) 

•  A geometric definition 
•  Can be related to total fluoresced flux (e.g., Huot et al., 2005) 

 

FLH 



•  Alternative & independent measure of chlorophyll 
   (particularly in coastal environments) 

•  Improved NPP estimates 

•  Index of phytoplankton physiology 
-  Pigment Packaging 
-  Non-photochemical quenching 
-  Nutrient stress effects 
-  Photoacclimation 
 

Why MODIS FLH? 
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•  subtract small FLH value of 0.001 mW cm-2 µm-1 sr-1 to 
   satisfy requirement that FLH = 0 when Chl = 0 

FLH = Chlsat x <aph
*> x PAR x    x S ϕ 

Derivation of ϕ (Fluorescence quantum yield)  

Absorbed energy 
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Derivation of φ (Fluorescence quantum yield)  
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Results - Global MODIS FLH 



Three primary factors regulate global phytoplankton 
fluorescence distributions: 
 

#1. Pigment concentrations (Chl) 

#2. Light (non-photochemical quenching) 
 

#3. “Pigment packaging”  
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Results - Global MODIS FLH 
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•  After correction for NPQ  
  and pigment packaging 
 
•  What do we expect in the  
  remaining variability?  

Results - Global MODIS FLH 

OC-3 GSM QAA 

Chlorophyll (mg m-3) 
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#1.  Unique consequences of iron stress 
 

 - Over-expression of pigment complexes 
 - Increases in PSII:PSI ratio 

  
    1. Chlorophyll   =   PSII & PSI 
    2. Fluorescence =  PSII 
    3. φ increases with PSII:PSI ratio  

#2.  Photoacclimation 
        - Low light = enhanced NPQ 
          at any given iPAR  

 à lower φ 
         

What do we expect in remaining variability? 
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Fluorescence Quantum Yields (ϕ) 
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•  Broadscale correspondence between fluorescence and 
degree of Fe stress 

-   ϕ when Fe is low 
   

-   ϕ when Fe is high 
 
•  Is this causal?  How can we test?  What might we 

expect? 

Fluorescence Quantum Yields (ϕ) and iron 
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•  SERIES – (Subarctic Ecosystem Response to Iron  
                Enrichment Study), Jul/Aug 2002 

•  SOFeX - (Southern Ocean Iron (Fe) Experiment),  
                Jan/Feb 2002 

Fluorescence and Fe enrichment experiments 
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Fluorescence and Fe enrichment experiments -SERIES 
 
•  Coverage is an issue (very cloudy!) 

•  MODIST consistent with SeaWiFS 

•  Chl increases, FLH increases, but 
  FLH:Chl decreases! 

	
  
	
  	
  

	
  
	
  	
  



ChlWiFS (mg m-3) 

South 

FLH FLH : Chl 

North 

ChlMODIST (mg m-3) 

South 

North 

•  North = SeaWiFS and MODIST from 12-13 Feb 2002 
  South = SeaWiFS and MODIST from 5 Feb 2002 
 
•  MODIST consistent with SeaWiFS 

•  Chl increases, FLH increases, but 
  FLH:Chl decreases! 
 
            

  
 

Fluorescence and Fe enrichment experiments -SOFeX 



Indian Ocean Fluorescence Quantum Yields (ϕ) 

•  Seasonally elevated fluorescence over south-
central Indian Ocean 

•  Regionally tuned ecosystem model indicates Fe  
   stress 



North Atlantic Ocean ϕ 

•  Not generally thought of as being 
Fe-limited 

 
•  In some years, NO3

- doesn’t get 
drawn down all the way 

 
•  Recent field studies have 

demonstrated Fe-limitation of 
post-bloom phytoplankton 
communities (Nielsdotter et al., 2009; 

Ryan-Keough et al., 2013) 

      ϕ (%) 



Photoacclimation, NPQ, and ϕ 

•  What about Fe-limited areas 
that do not show elevated 
fluorescence? 

•  Related to photoacclimation-
dependent NPQ response 
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•  Three major factors influcence FLH and ϕ : 
   [Chl] > NPQ > packaging 

 

•  Remaining variability can be related to iron nutrition and 
photoacclimation 

 

•  Demonstrated response to active iron enrichment 
 

•  We understand how photoacclimation affects ϕ in the lab 
and field, but how do we incorporate that information into 
satellite studies? 

 

Conclusions 



 

•  Tool to map new areas of iron stress 
    Examine physiological changes over time  

•  Inclusion of FLH data into primary production modeling.  
CAFÉ model 

 
 

•  Fluorescence capabilities for future missions? 

Parting Thoughts 
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